| Function | Summation Expansion | Comments | 
| ln (x) | 
= (x-1) - (1/2)(x-1)2 + (1/3)(x-1)3 + (1/4)(x-1)4 + ...
| =   | (x-1)n n
 |  | Taylor Series Centered at 1 (0 < x <=2)
 | 
| ln (x) | 
= (x-1)/x + (1/2) ((x-1) / x)2 + (1/3) ((x-1) / x)3
+ (1/4) ((x-1) / x)4 + ...
| =   | ((x-1) / x)n n
 |  
 | (x > 1/2) | 
| ln (x) | 
= ln(a) + (x-a) / a - (x-a)2 / 2a2 + (x-a)3
/ 3a3 - (x-a)4 / 3a4 + ...
| =ln(a)+   | (x-a)n n an
 |  | Taylor Series (0 < x <= 2a)
 | 
| ln (x) | 
= 2 [ (x-1)/(x+1)  + (1/3)( (x-1)/(x+1) )3 + (1/5)
( (x-1)/(x+1) )5 + (1/7) ( (x-1)/(x+1) )7 + ... ]
| =2  | ((x-1)/(x+1))(2n-1) (2n-1)
 |  | (x > 0) |