| Dave's Math Tables: Derivative Trig Functions  | 
| (Math | Calculus | Derivatives | Table Of | Trig Functions) | 
|  sin(x) = cos(x)  cos(x) = -sin(x)  tan(x) = sec^2(x)  csc(x) = -csc(x) cot(x)  sec(x) = sec(x) tan(x)  cot(x) = -csc^2(x) | 
 sin(x)
: algebraic Method
 sin(x)
: algebraic Method
Given: lim(d->0) sin(d)/d = 1.
Solve:
sin(x) = lim(d->0) ( sin(x+d) - sin(x) ) / d
= lim ( sin(x)cos(d) + cos(x)sin(d) - sin(x) ) / d
= lim ( sin(x)cos(d) - sin(x) )/d + lim cos(x)sin(d)/d
= sin(x) lim ( cos(d) - 1 )/d + cos(x) lim sin(d)/d
= sin(x) lim ( (cos(d)-1)(cos(d)+1) ) / ( d(cos(d)+1) ) + cos(x) lim sin(d)/d
= sin(x) lim ( cos^2(d)-1 ) / ( d(cos(d)+1 ) + cos(x) lim sin(d)/d
= sin(x) lim -sin^2(d) / ( d(cos(d) + 1) + cos(x) lim sin(d)/d
= sin(x) lim (-sin(d)) * lim sin(d)/d * lim 1/(cos(d)+1) + cos(x) lim sin(d)/d
= sin(x) * 0 * 1 * 1/2 + cos(x) * 1 = cos(x) Q.E.D.
Proof of  cos(x)
: from the derivative of sine
 cos(x)
: from the derivative of sine
This can be derived just like  sin(x) was derived or more easily from the result of
sin(x) was derived or more easily from the result of  sin(x)
sin(x)
Given:  sin(x) = cos(x); Chain Rule.
sin(x) = cos(x); Chain Rule.
Solve:
cos(x) = sin(x + PI/4)
cos(x) =
sin(x + PI/4)
=sin(u) *
(x + PI/4) (Set u = x + PI/4)
= cos(u) * 1 = cos(x + PI/4) = -sin(x) Q.E.D.
Proof of  tan(x)
: from the derivatives of sine and cosine
 tan(x)
: from the derivatives of sine and cosine
Given:  sin(x) = cos(x);
sin(x) = cos(x);  cos(x) = -sin(x); Quotient Rule.
cos(x) = -sin(x); Quotient Rule.
Solve:
tan(x) = sin(x) / cos(x)
tan(x) =
sin(x)/cos(x)
= ( cos(x)sin(x) - sin(x)
cos(x) ) / cos^2(x)
= ( cos(x)cos(x) + sin(x)sin(x) ) / cos^2(x)
= 1 + tan^2(x) = sec^2(x) Q.E.D.
Proof of  csc(x),
 csc(x),
 sec(x),
 sec(x),
 cot(x)
: from derivatives of their reciprocal functions
 cot(x)
: from derivatives of their reciprocal functions 
Given:  sin(x) = cos(x);
sin(x) = cos(x);  cos(x) = -sin(x);
cos(x) = -sin(x);  tan(x) = cot(x); Quotient Rule.
tan(x) = cot(x); Quotient Rule.
Solve:
csc(x) =
1/sin(x) = ( sin(x)
(1) - 1
sin(x) ) / sin^2(x) = -cos(x) / sin^2(x) = -csc(x)cot(x)
sec(x) =
1/cos(x) = ( cos(x)
(1) - 1
cos(x) ) / cos^2(x) = sin(x) / cos^2(x) = sec(x)tan(x)
cot(x) =
1/tan(x) = ( tan(x)
(1) - 1
tan(x) ) / tan^2(x) = -sec^2(x) / tan^2(x) = -csc^2(x) Q.E.D.
