| Dave's Math Tables: Integral Identities  | 
| (Math | Calculus | Integrals | Identities) | 
Formal Integral Definition:

 f(x) dx = lim (d -> 0)
 f(x) dx = lim (d -> 0)  (k=1..n) f(X(k)) (x(k) - x(k-1)) when...
 (k=1..n) f(X(k)) (x(k) - x(k-1)) when...
a = x0 < x1 < x2 < ... < xn = b
d = max (x1-x0, x2-x1, ... , xn - x(n-1))
x(k-1) <= X(k) <= x(k) k = 1, 2, ... , n

 F '(x) dx = F(b) - F(a) (Fundamental Theorem for integrals of derivatives)
 F '(x) dx = F(b) - F(a) (Fundamental Theorem for integrals of derivatives)
 a f(x) dx = a
a f(x) dx = a f(x) dx (if a is constant)
 f(x) dx (if a is constant)
 f(x) + g(x) dx =
f(x) + g(x) dx =  f(x) dx +
f(x) dx +  g(x) dx
g(x) dx

 f(x) dx =
 f(x) dx =  f(x) dx | (a b)
f(x) dx | (a b)

 f(x) dx +
 f(x) dx + 
 f(x) dx =
 f(x) dx = 
 f(x) dx
 f(x) dx
 f(u) du/dx dx =
f(u) du/dx dx =  f(u) du (integration by substitution)
f(u) du (integration by substitution)
