| Dave's Math Tables:
Integral coth(x)  | 
| (Math | Calculus | Integrals | Table Of | coth x) | 
|  coth x dx = ln |sinh x| + C. | 
|  | cosh x sinh x | = | (ex - e-x) / 2 | 
|  coth
x dx =  | ex - e-x | dx | 
substitute du= (ex + e-x) dx, u = ex
- e-x
 
| =  | u | 
= ln |u| + C
substitute back u = ex - e-x
= ln |ex - e-x| + C
since (ex - e-x)/2 = sinh(x)
= ln |2 sinh x| + C
= ln 2 + ln |sinh x| + C
ln 2 is merely a constant that can be combined with C
= ln |sinh x| + C
Q.E.D.
