| Dave's Math Tables:
Table of Integrals  | 
| (Math | Calculus | Integrals | Table Of) | 
Power of x.
|  xn
dx = x(n+1) / (n+1) + C (n  -1)  Proof |  1/x
dx = ln|x| + C | 
Exponential / Logarithmic
|  ex
dx = ex + C Proof |  bx
dx = bx / ln(b) + C Proof, Tip! | 
|  ln(x)
dx = x ln(x) - x + C Proof | 
Trigonometric
|  sin
x dx = -cos x + C Proof |  csc
x dx = - ln|csc x + cot x| + C Proof | 
|  cos
x dx = sin x + C Proof |  sec
x dx = ln|sec x + tan x| + C Proof | 
|  tan
x dx = -ln|cos x| + C Proof |  cot
x dx = ln|sin x| + C Proof | 
Trigonometric Result
|  cos
x dx = sin x + C Proof |  csc
x cot x dx = - csc x + C Proof | 
|  sin
x dx = -cos x + C Proof |  sec
x tan x dx = sec x + C Proof | 
|  sec2
x dx = tan x + C Proof |  csc2
x dx = - cot x + C Proof | 
Inverse Trigonometric
|  arcsin
x dx = x arcsin x +  (1-x2)
+ C | 
|  arccsc
x dx = x arccos x -  (1-x2)
+ C | 
|  arctan
x dx = x arctan x - (1/2) ln(1+x2)
+ C | 
Inverse Trigonometric Result
 
| 
 | 
 | 
Hyperbolic
|  sinh
x dx = cosh x + C Proof |  csch
x dx = ln |tanh(x/2)| + C Proof | 
|  cosh
x dx = sinh x + C Proof |  sech
x dx = arctan (sinh x) + C | 
|  tanh
x dx = ln (cosh x) + C Proof |  coth
x dx = ln |sinh x| + C Proof | 
| To solve a more complicated integral, see The Integrator at http://integrals.com. |