| Dave's Math Tables:
Integral ln(x)  | 
| (Math | Calculus | Integrals | Table Of | ln x) | 
|  ln(x) dx = x ln(x) - x + C. | 
 ln(x) dx
ln(x) dx
set
  u = ln(x),    dv = dx
then we find
  du = (1/x) dx,    v = x
substitute
 ln(x)
dx =
 ln(x)
dx =  u dv
u dv
and use integration by parts
= uv -  v du
v du
substitute u=ln(x), v=x, and du=(1/x)dx
= ln(x) x -  x (1/x) dx
x (1/x) dx
= ln(x) x -  dx
dx
= ln(x) x - x + C
= x ln(x) - x + C.
Q.E.D.
