| Dave's Math Tables: Special Functions  | 
| (Math | Calculus | Integrals | Special Functions) | 

 constant = 0.5772156649...
 constant = 0.5772156649...
 (x) = Gamma(x) =
(x) = Gamma(x) = 
 t^(x-1) e^(-t)dt  (Gamma function)
t^(x-1) e^(-t)dt  (Gamma function)
B(x,y) = 
 t^(x-1) (1-t)^(y-1)dt (Beta function)
t^(x-1) (1-t)^(y-1)dt (Beta function)
Ei(x) = 
 e^(-t)/t dt (exponential integral) or it's variant, NONEQUIVALENT form:
e^(-t)/t dt (exponential integral) or it's variant, NONEQUIVALENT form:
Ei(x) = 
li(x) =  + ln(x) +
 + ln(x) + 
 (e^t - 1)/t dt = gamma + ln(x) +
(e^t - 1)/t dt = gamma + ln(x) +  (n=1..inf)x^n/(n*n!)
(n=1..inf)x^n/(n*n!)
 1/ln(t) dt (logarithmic integral)
1/ln(t) dt (logarithmic integral)
Si(x) = 
 sin(t)/t dt (sine integral)  or it's variant, NONEQUIVALENT form:
sin(t)/t dt (sine integral)  or it's variant, NONEQUIVALENT form:
Si(x) = 

 sin(t)/t dt = PI/2 -
sin(t)/t dt = PI/2 - 
 sin(t)/t dt
sin(t)/t dt
Ci(x) = 
 cos(t)/t dt (cosine integral) or it's variant, NONEQUIVALENT form:
cos(t)/t dt (cosine integral) or it's variant, NONEQUIVALENT form:
Ci(x) = - 

 cos(t)/t dt = gamma + ln(x) +
cos(t)/t dt = gamma + ln(x) + 
 (cos(t) - 1) / t dt (cosine integral)
 (cos(t) - 1) / t dt (cosine integral)
Chi(x) = gamma + ln(x) + 
 (cosh(t)-1)/t dt (hyperbolic cosine integral)
(cosh(t)-1)/t dt (hyperbolic cosine integral)
Shi(x) = 
 sinh(t)/t dt (hyperbolic sine integral)
sinh(t)/t dt (hyperbolic sine integral)
Erf(x) = 2/PI^(1/2)
 e^(-t^2) dt = 2/
e^(-t^2) dt = 2/ PI
PI  (n=0..inf) (-1)^n x^(2n+1) / ( n! (2n+1) ) (error function)
(n=0..inf) (-1)^n x^(2n+1) / ( n! (2n+1) ) (error function)
FresnelC(x) = 
 cos(PI/2 t^2) dt
cos(PI/2 t^2) dt
FresnelS(x) = 
 sin(PI/2 t^2) dt
sin(PI/2 t^2) dt
dilog(x) = 
 ln(t)/(1-t) dt
ln(t)/(1-t) dt
Psi(x) =  ln(Gamma(x))
ln(Gamma(x))
Psi(n,x) = nth derivative of Psi(x)
W(x) = inverse of x*e^x
L sub n (x) = (e^x/n!)( x^n e^(-x) ) (n) (laguerre polynomial degree n. (n) meaning nth derivative)
Zeta(s) =  (n=1..inf) 1/n^s
(n=1..inf) 1/n^s
Dirichlet's beta function B(x) =  (n=0..inf) (-1)^n / (2n+1)^x
(n=0..inf) (-1)^n / (2n+1)^x
 
 
Theorems with hyperlinks have proofs, related
theorems, discussions, and/or other info.